Cost and Outcomes of a Diabetes Remote Patient Monitoring System: A Simulation Analysis

Valerie H. Myers, PhD1, Mark A. Clements, MD, PhD1, Edward T. Nykaza, PhD1, Komathi Stem, MS1, Sanaz Nosrat, PhD1, Victoria W. Dayer, PharmD^{2,3}, Sean D. Sullivan, PhD^{2,3}, Ryan N. Hansen, PharmD, PhD^{2,3}

> ¹Glooko, Inc., Global Clinical Research Evidence Generation, Palo Alto, CA, USA ²CHOICE Institute School of Pharmacy, University of Washington, Seattle, WA, USA ³VeriTech Corp, Seattle, WA, USA

BACKGROUND & STUDY AIM

Background

- Digital health can assist persons with diabetes (PWD) with better disease management
- Scant research exists on whether remote patient monitoring (RPM) supported by digital therapeutics (RPM+DT) impact long-term Type 2 diabetes (T2D) outcomes and costs
- Glooko is a connected care RPM program connecting providers and patients for comprehensive diabetes

Aim

A mathematical simulation model was used to estimate the impact of a RPM+DT technology on diabetes outcomes, health care resource use, and costs

MICROSIMULATION MODELING

- Simulates changes in individual characteristics over time using known probabilities and allows prediction based on the impact of an intervention
- A faster and less expensive option than conducting an independent health economics outcomes research (HEOR) study

HEOR Model T2D Data Sources

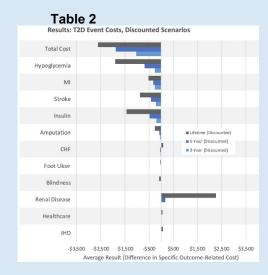
- UK Prospective Diabetes Study Outcomes Model 2 (OM2)
- Glooko RPM clinical trial data
- National Health and Nutrition Examination Survey (NHANES)

HEOR Model Parameters

- 3- and 5-yr, lifetime scenario analyses
- 3% discount rate
- Cost of RPM not included

METHODS

- Step 1: Individual Patient Simulation
 - Patients with T2D data from NHANES to populate the model (n=745)
- Step 2: Event Microsimulation
 - OM2 risk equations estimated longitudinal disease trajectory
 - Increases in HbA1c and weight, hypoglycemia incidence, and insulin treatment were accounted for in the model
 - All event and/or mortality associated costs were applied
- Step 3: Glooko Clinical Trial Data
 - Hazard ratios from the Glooko RCT estimated the incidence of clinical events and mortality in each year until the simulated patient "died"
- Step 4: Calculation of Mean Results
 - Differences between Glooko RPM and Standard of Care for micro- and macrovascular outcomes (clinical events) and costs were estimated
 - One-way and probabilistic sensitivity analyses to estimate 95% credible ranges were conducted


RESULTS

- Clinical events (Table 1) and Costs (Table 2) decreased over time with **RPM**
- Disease related costs savings across all time horizons (Table 3)

Table 1 Results: Outcomes, Discounted Scenario 1st Amp, No Ulc Foot Ulcer Blindness CV Death CHF 1st Amp, Ulcer Renal Disease

Iddic o			
	3-Year	5-Year	Lifetime
IHD	\$0	\$5	\$79
Healthcare	-\$2	-\$2	\$49
Renal Disease	-\$5	\$174	\$2,270
Blindness	-\$7	-\$16	-\$83
Foot Ulcer	-\$8	-\$12	-\$35
CHF	-\$28	\$44	\$87
Amputation	-\$48	-\$76	-\$267
Insulin	-\$191	-\$480	-\$1,430
Stroke	-\$221	-\$423	-\$883
MI	-\$258	-\$321	-\$524
Hypoglycemia	-\$263	-\$682	-\$1,902
Total Cost	-\$1,030	-\$1,875	-\$2,612

CONCLUSIONS

❖ In a RCT of RPM+DT, the intervention resulted in significantly improved HbA1c. Incorporating these results into a microsimulation model of longer-term complications, mortality, and costs demonstrated the potential for RPM+DT to elicit health gains and cost savings among PWD.